112 research outputs found

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role

    Splitting or lumping? A conservation dilemma exemplified by the critically endangered Dama Gazelle (Nanger dama)

    Get PDF
    Managers of threatened species often face the dilemma of whether to keep populations separate to conserve local adaptations and minimize the risk of outbreeding, or whether to manage populations jointly to reduce loss of genetic diversity and minimise inbreeding. In this study we examine genetic relatedness and diversity in three of the five last remaining wild populations of dama gazelle and a number of captive populations, using mtDNA control region and cytochrome b data. Despite the sampled populations belonging to the three putative subspecies, which are delineated according to phenotypes and geographical location, we find limited evidence for phylogeographical structure within the data and no genetic support for the putative subspecies. In the light of these data we discuss the relevance of inbreeding depression, outbreeding depression, adaptive variation, genetic drift, and phenotypic variation to the conservation of the dama gazelle and make some recommendations for its future conservation management. The genetic data suggest that the best conservation approach is to view the dama gazelle as a single species without subspecific divisions

    Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash

    No full text
    Spatial genetic structure was analysed with five highly polymorphic microsatellite loci in a Romanian population of common ash (Fraxinus excelsior L.), a wind-pollinated and wind-dispersed tree species occurring in mixed deciduous forests over almost all of Europe. Contributions of seed and pollen dispersal to total gene flow were investigated by analysing the pattern of decrease in kinship coefficients among pairs of individuals with geographical distance and comparing it with simulation results. Plots of kinship against the logarithm of distance were decomposed into a slope and a shape component. Simulations showed that the slope is informative about the global level of gene flow, in agreement with theoretical expectations, whereas the shape component was correlated with the relative importance of seed vs. pollen dispersal. Hence, our results indicate that insights into the relative contributions of seed and pollen dispersal to overall gene flow can be gained from details of the pattern of spatial genetic structure at biparentally inherited loci. In common ash, the slope provided an estimate of total gene dispersal in terms of Wright's neighbourhood size of NbFLWINinfo:eu-repo/semantics/publishe

    Hybridization between crops and wild relatives: the contribution of cultivated lettuce to the vigour of crop–wild hybrids under drought, salinity and nutrient deficiency conditions

    Get PDF
    With the development of transgenic crop varieties,crop–wild hybridization has received considerable consideration with regard to the potential of transgenes to be transferred to wild species. Although many studies have shown that crops can hybridize with their wild relatives and that the resulting hybrids may show improved fitness over the wild parents, little is still known on the genetic contribution of the crop parent to the performance of the hybrids. In this study, we investigated the vigour of lettuce hybrids using 98 F2:3 families from a cross between cultivated lettuce and its wild relative Lactuca serriola under non-stress conditions and under drought, salinity and nutrient deficiency. Using single nucleotide polymorphism markers, we mapped quantitative trait loci associated with plant vigour in the F2:3 families and determined the allelic contribution of the two parents. Seventeen QTLs (quantitative trait loci) associated with vigour and six QTLs associated with the accumulation of ions (Na?, Cl- and K?) were mapped on the nine linkage groups of lettuce. Seven of the vigour QTLs had a positive effect from the crop allele and six had a positive effect from the wild allele across treatments, and four QTLs had a positive effect from the crop allele in one treatment and from the wild allele in another treatment. Based on the allelic effect of the QTLs and their location on the genetic map, we could suggest genomic locations where transgene integration should be avoided when aiming at the mitigation of its persistence once crop–wild hybridization takes place

    Genomic release-recapture experiment in the wild reveals within-generation polygenic selection in stickleback fish

    Get PDF
    How rapidly natural selection sorts genome-wide standing genetic variation during adaptation remains largely unstudied experimentally. Here, we present a genomic release-recapture experiment using paired threespine stickleback fish populations adapted to selectively different lake and stream habitats. First, we use pooled whole-genome sequence data from the original populations to identify hundreds of candidate genome regions likely under divergent selection between these habitats. Next, we generate F2 hybrids from the same lake-stream population pair in the laboratory and release thousands of juveniles into a natural stream habitat. Comparing the individuals surviving one year of stream selection to a reference sample of F2 hybrids allows us to detect frequency shifts across the candidate regions toward the genetic variants typical of the stream population—an experimental outcome consistent with polygenic directional selection. Our study reveals that adaptation in nature can be detected as a genome-wide signal over just a single generation
    • …
    corecore